Tipos de campaña Astroturfing de contenidos desinformativos y polarizados en tiempos de pandemia en España
Contenido principal del artículo
Resumen
Este trabajo busca determinar la aplicación de estrategias de Astroturfing en Twitter, a nivel español, durante el periodo de pandemia a causa de la Covid-19, en la primavera del año 2020. Se aplica análisis estadístico, análisis de redes y técnicas de machine learning, en 32.527 mensajes, publicados a partir del decreto de estado de alarma en España (14 de marzo de 2020) hasta finales de mayo del mismo año, asociados ocho etiquetas que abordan temas vinculados a contenidos desinformativos identificados por dos de los principales proyectos de fact-checking (Maldito Bulo y Newtral). Los datos nos permiten observar, entre otras cosas, la participación de usuarios (no bots), que ejercen un rol de influenciadores pese a que cuentan con un perfil promedio o alejado a ser considerados como personalidad pública. Se aprecia la aplicación del Astroturfing, como estrategia de comunicación empleada para posicionar temas en las redes sociales, a nivel de la opinión pública en España, a través de la distribución, amplificación y la inundación de contenidos desinformativos. El escenario permite comprobar la presencia de un escenario comunicativo digital que favorecería un marco más difícil de detección de contenidos desinformativos, desde estrategias como la estudiada, orientadas a romper el efecto campana y filtro de burbuja de redes sociales como Twitter. Todo, con el fin de posicionar temas a nivel de la opinión pública.
Descargas
Métricas
Detalles del artículo
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.
Citas
Allem, Jon-Patrick; & Ferrara, Emilio (2018). Could social bots pose a threat to public health? American journal of public health, 108(8), 1005-1006. https://doi.org/10.2105/AJPH.2018.304512
Blondel, Vincent; Guillaume, Jean-Lup; Lambiotte, Renaud; & Lefebvre, Etienne (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10). https://doi.org/10.1088/1742-5468/2008/10/P10008
Boididou, Christina; Middleton, Stuarte-E.; Jin, Zhiwei; Papadopoulos, Symeon; Dang-Nguyen, Duc-Tien; Boato, Giulia; & Kompatsiaris, Yiannis (2018). Verifying information with multimedia content on Twitter. Multimedia tools and applications, 77(12), 15545-15571. https://doi.org/10.1007/s11042-017-5132-9
Bradshaw, Samantha; Bailey, Hanah; & Howard, Philip-N. (2021). Industrialized disinformation. 2020 Global inventory of organized social media manipulation. Working Paper 2021.1. Project on Computational Propaganda. https://cutt.ly/VOgTtjO
Chen, Tong; Liu, Jiqiang; Wu, Yalun; Tian, Yunzhe; Tong, Endong; Niu, Wenjia, Li, Yike, Xiang, Yingxiao; & Wang, Wei (2021). Survey on Astroturfing Detection and Analysis from an Information Technology Perspective. Secutiry and Communication Networks, 2021, 3294610. https://doi.org/10.1155/2021/3294610
Elmas, Tugrulcan (2019). Lateral Astroturfing Attacks on Twitter Trending Topics. AMLD EPFL. Lausanne. https://cutt.ly/4yGaj5L
Elmas, Tugrulcan; Overdorf, Rebekah; Özkalay, Ahmed-Furkan; & Aberer, Karl (2021). Ephemeral Astroturfing Attacks: The Case of Fake Twitter Trends. arXiv preprint arXiv:1910.07783 https://arxiv.org/abs/1910.07783.
Estrada-Cuzcano, Alonso; Alfaro-Mendives, Karen; & Saavedra-Vásquez, Valeria (2020). Desinformación y desinformación, Posverdad y noticias falsas: precisiones conceptuales, diferencias, similitudes y yuxtaposiciones. Información, cultura y sociedad, (42), 93-106. https://doi.org/10.34096/ics.i42.7427
Ferrara, Emilio; Varol, Onur; Davis, Clayton; Menczer, Filippo; & Flammini Alessandro (2016). The rise of social bots. Communications of the ACM 59(7), 96–104. https://doi.org/10.1145/2818717
Flaxman, Seth; Goel, Sharad; & Rao, Justin-M. (2016). Filter Bubbles, Echo Chambers, and Online News Consumption. Public Opinion Quarterly, 80, 298–320. https://doi.org/10.1093/poq/nfw006
Gallwitz, Florian; & Kreil, Michael (2021). The Rise and Fall of “Social Bot”. Research (March 28, 2021). https://ssrn.com/abstract=3814191
González, Fernán (2020, 20 de mayo). Manifestantes de extrema izquierda gritan ¨¡Muerte al Rey y a sus hijas!¨. Ok Diario. https://cutt.ly/CyVjTUR.
Granovetter, Mark (1973). The strength of weak ties. American Journal of Sociology, 78, 1360-1380.
Grimme, Christian; Assenmacher, Dennis; & Adam, Lena (2018). Changing Perspectives: Is It Sufficient to Detect Social Bots?. In Meiselwitz G. (eds.) Social Computing and Social Media. User Experience and Behavior (pp. 445-461). Lecture Notes in Computer Science, vol. 10913. Springer, Cham. https://doi.org/10.1007/978-3-319-91521-0_32
Guess, Andrew; Nyhan, Brendan; & Reifler, Jason (2018). Selective Exposure to Misinformation: Evidence from the consumption of fake news during the 2016 U.S. Presidential campaign. European Research Council. https://cutt.ly/FOgUe1R.
Hansen, Derek-L.; Shneiderman, Ben, Smith, Marc-A.; & Himerlboim, Itai (2020). Analyzing Social Media Networks with NodeXL: Insights from a Connected World. Elsevier. https://doi.org/10.1016/C2018-0-01348-1
Howard, Philip-N.; Bolsover, Gillian; Kollanyi, Bence; Bradshaw, Samantha; & Neudert, Lisa-Maria (2017). Junk News and Bots during the U.S. Election: What Were Michigan Voters Sharing Over Twitter? Computational Propaganda Project-Oxford Internet Institute, Data Memo, 1. https://cutt.ly/kRihRoY
Kearney, Michael-W. (2018). Tweetbotornot: An R package for classifying Twitter accounts as bot or not. https://github.com/mkearney/tweetbotornot
Kearney, Michael-W. (2019). Rtweet: Collecting y analyzing Twitter data. Journal of Open Source Software, 4(42), 1829. https://doi.org/10.21105/joss.01829
Keller, Franziska-B.; Schoch, David; Stier, Sebastian; & Yang, Jung-Hwan (2019). Political Astroturfing on Twitter: How to coordinate a disinformation campaign. Political Communication, 37(2), 256-280. https://doi.org/10.1080/10584609.2019.1661888
Kucharski, Adam (2016). Study epidemiology of fake news. Nature, 540(525). https://doi.org/10.1038/540525a
Luceri, Luca; Deb, Ashok; Badawy, Adam; & Ferrara, Emilio (2019). Red bots do it better: Comparative analysis of social bot partisan behavior. In Companion Proceedings of the 2019 World Wide Web Conference, 1007-1012. https://arxiv.org/abs/1902.02765
Martin, Shawn; Brown, W.-Michael; Klavans, Richard; & Boyack, Kevin-W. (2011). OpenOrd: An Open-Source Toolbox for Large Graph Layout. In Proc. SPIE, Visualization and Data Analysis 2011. San Francisco, Estados Unidos. https://doi.org/10.1117/12.871402
Martini, Franziska; Samula, Paul; Keller, Tobias-R., & Klinger, Ulrike (2021). Bot, or not? Comparing three methods for detecting social bots in five political discourses. Big Data & Society, 8(2), 1-13. https://doi.org/10.1177/20539517211033566
Mazzoleni, Gianpietro; & Bracciale, Roberta (2018). Socially mediated populism: the communicative strategies of political leaders on Facebook. Palgrave Communications, 4(50). https://doi.org/10.1057/s41599-018-0104-x
Magallón, Raúl (2019). Unfaking News. Cómo combatir la desinformación. Pirámide.
Ong, Jonathan-Corpus; Tapsell, Ross; & Curato, Nicole (2019) Tracking Digital Disinformation in the 2019 Philippine Midterm Election. New Mandala. https://cutt.ly/6RhPHt4
Pérez-Curiel, Concha; & Limón, Pilar (2019). Political influencers. A study of Donald Trump’s personal brand on Twitter and its impact on the media and users. Comunicación y Sociedad, 32(1), 57-75. https://doi.org/10.15581/003.32.1.57-75
Pérez, Jordi (2020, 21 de may). ¨Yo fui un bot¨: las confesiones de un agente dedicado al engaño en Twitter. El País. https://cutt.ly/wRihXGu
Pozzi, Federico-Alberto; Fersini, Elisabetta; Messina, Enza; & Liu, Bing (2017). The aim of Sentiment Analysis. Elsevier. https://doi.org/10.1016/C2015-0-01864-0
Ribera, Carles-Salom (2014). Estrategia en redes sociales basada en la teoría de los vínculos débiles. Más poder local, 19, 23-25. https://dialnet.unirioja.es/descarga/articulo/4753468.pdf
Said-Hung, Elías; Merino-Arribas, Adoración; & Martínez, Javier (2021). Evolución del debate académico en la Web of Science y Scopus sobre unfaking news (2014-2019). Estudios sobre el Mensaje Periodístico, 27(3), 961-971. https://doi.org/10.5209/esmp.71031
Salaverría, Ramón; Buslón, Nataly; López-Pan, Fernando; León, Bienvenido; López-Goñi, Ignacio; & Erviti, María-Carmen (2020). Desinformación en tiempos de pandemia: tipología de los bulos sobre la covid-19. El profesional de la información, 29(3). https://doi.org/10.3145/epi.2020.may.15
Sorensen, Anne; Andrews, Lynda; & Drennan, Judy (2017). Using social media posts as resources for engaging in value co-creation: The case for social media-based cause brand communities. Journal of Service Theory and Practice, 27(4), 898-922. https://doi.org/10.1108/JSTP-04-2016-0080
Tandoc, Edson-C.; Lim, Zheng-Wei; & Ling, Richard (2018). Defining “fake news” A typology of scholarly definitions. Digital journalism, 6(2), 137-153. https://doi.org/10.1080/21670811.2017.1360143
Van-der-Linden, Sander; Maibach, Edward; Cook, John; Leiserowitz, Anthony; & Lewandowsky, Stephan (2017). Inoculating Against Misinformation. Science, 358(6367), 1141–1142. https://doi.org/10.17863/CAM.26207
Van-der-Veen, Han; Hiemstra, Djoerd; Van-den-Broek, Tijs; Ehrenhard, Michel; & Need, Ariana (2015). Determine the User Country of a Tweet. Social and Information Networks. https://arxiv.org/abs/1508.02483
Zerback, Thomas; & Töpfl, Florian (2021). Forged Examples as Disinformation: The Biasing Effects of Political Astroturfing Comments on Public Opinion Perceptions and How to Prevent Them. Political Psychology, 43(3), 399-418. https://doi.org/10.1111/pops.12767
Zhao, Zilong; Zhao, Jichang; Sano, Yukie; Levy, Orr; Takayasu, Hideki; Takayasu, Misako; Li, Daqing; Wu, Junjie; & Havlin, Shlomo (2020). Fake news propagates differently from real news even at early stages of spreading. EPJ Data Science, 9(7). https://doi.org/10.1140/epjds/s13688-020-00224-z
Zheng, Haizhong; Xue, Minhui; Hao, Lu; Hao, Shuang; Zhu, Haojin; Liang, Xiaohui; & Ross, Keith (2017). Smoke Screener or Straight Shooter: Detecting Elite Sybil Attack. Social and Information Networks. https://arxiv.org/abs/1709.06916